"""
This file is part of CLIMADA.
Copyright (C) 2017 ETH Zurich, CLIMADA contributors listed in AUTHORS.
CLIMADA is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free
Software Foundation, version 3.
CLIMADA is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with CLIMADA. If not, see <https://www.gnu.org/licenses/>.
---
Finance functionalities.
"""
__all__ = ['net_present_value', 'income_group', 'gdp']
import shutil
import logging
import warnings
import zipfile
from pathlib import Path
import requests
import numpy as np
import pandas as pd
from pandas_datareader import wb
from cartopy.io import shapereader
from climada.util.files_handler import download_file
from climada.util.constants import SYSTEM_DIR
LOGGER = logging.getLogger(__name__)
WORLD_BANK_WEALTH_ACC = \
"https://databank.worldbank.org/data/download/Wealth-Accounts_CSV.zip"
"""Wealth historical data (1995, 2000, 2005, 2010, 2014) from World Bank (ZIP).
https://datacatalog.worldbank.org/dataset/wealth-accounting
Includes variable Produced Capital (NW.PCA.TO)"""
FILE_WORLD_BANK_WEALTH_ACC = "Wealth-AccountsData.csv"
WORLD_BANK_INC_GRP = \
"http://databank.worldbank.org/data/download/site-content/OGHIST.xls"
"""Income group historical data from World bank."""
INCOME_GRP_WB_TABLE = {'L': 1, # low income
'LM': 2, # lower middle income
'UM': 3, # upper middle income
'H': 4, # high income
'..': np.nan # no data
}
"""Meaning of values of world banks' historical table on income groups."""
INCOME_GRP_NE_TABLE = {5: 1, # Low income
4: 2, # Lower middle income
3: 3, # Upper middle income
2: 4, # High income: nonOECD
1: 4 # High income: OECD
}
"""Meaning of values of natural earth's income groups."""
FILE_GWP_WEALTH2GDP_FACTORS = 'WEALTH2GDP_factors_CRI_2016.csv'
"""File with wealth-to-GDP factors from the
Credit Suisse's Global Wealth Report 2017 (household wealth)"""
def _nat_earth_shp(resolution='10m', category='cultural',
name='admin_0_countries'):
shp_file = shapereader.natural_earth(resolution=resolution,
category=category, name=name)
return shapereader.Reader(shp_file)
[docs]
def net_present_value(years, disc_rates, val_years):
"""Compute net present value.
Parameters
----------
years : np.array
array with the sequence of years to consider.
disc_rates : np.array
discount rate for every year in years.
val_years : np.array
chash flow at each year.
Returns
-------
float
"""
if years.size != disc_rates.size or years.size != val_years.size:
raise ValueError(f'Wrong input sizes {years.size}, {disc_rates.size}, {val_years.size}.')
npv = val_years[-1]
for val, disc in zip(val_years[-2::-1], disc_rates[-2::-1]):
npv = val + npv / (1 + disc)
return npv
[docs]
def income_group(cntry_iso, ref_year, shp_file=None):
"""Get country's income group from World Bank's data at a given year,
or closest year value. If no data, get the natural earth's approximation.
Parameters
----------
cntry_iso : str
key = ISO alpha_3 country
ref_year : int
reference year
shp_file : cartopy.io.shapereader.Reader, optional
shape file with
INCOME_GRP attribute for every country. Load Natural Earth admin0
if not provided.
"""
try:
close_year, close_val = world_bank(cntry_iso, ref_year, 'INC_GRP')
except (KeyError, IndexError):
# take value from natural earth repository
close_year, close_val = nat_earth_adm0(cntry_iso, 'INCOME_GRP',
shp_file=shp_file)
LOGGER.info('Income group %s %s: %s.', cntry_iso, close_year, close_val)
return close_year, close_val
[docs]
def gdp(cntry_iso, ref_year, shp_file=None, per_capita=False):
"""Get country's (current value) GDP from World Bank's data at a given year, or
closest year value. If no data, get the natural earth's approximation.
Parameters
----------
cntry_iso : str
key = ISO alpha_3 country
ref_year : int
reference year
shp_file : cartopy.io.shapereader.Reader, optional
shape file with
INCOME_GRP attribute for every country. Load Natural Earth admin0
if not provided.
per_capita : boolean, optional
If True, GDP is returned per capita
Returns
-------
float
"""
if cntry_iso == 'TWN':
LOGGER.warning('GDP data for TWN is not provided by World Bank. \
Instead, IMF data is returned here.')
close_year, close_val = _gdp_twn(ref_year, per_capita=per_capita)
return close_year, close_val
try:
if per_capita:
close_year, close_val = world_bank(cntry_iso, ref_year, 'NY.GDP.PCAP.CD')
else:
close_year, close_val = world_bank(cntry_iso, ref_year, 'NY.GDP.MKTP.CD')
except (ValueError, IndexError, requests.exceptions.ConnectionError) as err:
if isinstance(err, requests.exceptions.ConnectionError):
LOGGER.warning('Internet connection failed while retrieving GDPs.')
close_year, close_val = nat_earth_adm0(cntry_iso, 'GDP_MD', 'GDP_YEAR', shp_file)
LOGGER.info("GDP {} {:d}: {:.3e}.".format(cntry_iso, close_year, close_val))
return close_year, close_val
def world_bank(cntry_iso, ref_year, info_ind):
"""Get country's GDP from World Bank's data at a given year, or
closest year value. If no data, get the natural earth's approximation.
Parameters
----------
cntry_iso : str
key = ISO alpha_3 country
ref_year : int
reference year
info_ind : str
indicator of World Bank, e.g. 'NY.GDP.MKTP.CD'. If
'INC_GRP', historical income groups from excel file used.
Returns
-------
int, float
Raises
------
IOError, KeyError, IndexError
"""
if info_ind != 'INC_GRP':
with warnings.catch_warnings():
warnings.simplefilter("ignore")
cntry_gdp = wb.download(indicator=info_ind, country=cntry_iso, start=1960, end=2030)
years = np.array([int(year) for year in cntry_gdp.index.get_level_values('year')])
sort_years = np.abs(years - ref_year).argsort()
close_val = cntry_gdp.iloc[sort_years].dropna()
close_year = int(close_val.iloc[0].name[1])
close_val = float(close_val.iloc[0].values)
else: # income group level
fn_ig = SYSTEM_DIR.joinpath('OGHIST.xls')
dfr_wb = pd.DataFrame()
try:
if not fn_ig.is_file():
file_down = download_file(WORLD_BANK_INC_GRP)
shutil.move(file_down, fn_ig)
dfr_wb = pd.read_excel(fn_ig, 'Country Analytical History', skiprows=5)
dfr_wb = dfr_wb.drop(dfr_wb.index[0:5]).set_index('Unnamed: 0')
dfr_wb = dfr_wb.replace(INCOME_GRP_WB_TABLE.keys(),
INCOME_GRP_WB_TABLE.values())
except (IOError, requests.exceptions.ConnectionError) as err:
raise type(err)('Internet connection failed while downloading '
'historical income groups: ' + str(err)) from err
cntry_dfr = dfr_wb.loc[cntry_iso]
close_val = cntry_dfr.iloc[np.abs(
np.array(cntry_dfr.index[1:]) - ref_year).argsort() + 1].dropna()
close_year = close_val.index[0]
close_val = int(close_val.iloc[0])
return close_year, close_val
def nat_earth_adm0(cntry_iso, info_name, year_name=None, shp_file=None):
"""Get country's parameter from natural earth's admin0 shape file.
Parameters
----------
cntry_iso : str
key = ISO alpha_3 country
info_name : str
attribute to get, e.g. 'GDP_MD', 'INCOME_GRP'.
year_name : str, optional
year name of the info_name in shape file,
e.g. 'GDP_YEAR'
shp_file : cartopy.io.shapereader.Reader, optional
shape file with
INCOME_GRP attribute for every country. Load Natural Earth admin0
if not provided.
Returns
-------
int, float
Raises
------
ValueError
"""
if not shp_file:
shp_file = _nat_earth_shp('10m', 'cultural', 'admin_0_countries')
close_val = 0
close_year = 0
for info in shp_file.records():
if info.attributes['ADM0_A3'] == cntry_iso:
close_val = info.attributes[info_name]
if year_name:
close_year = int(info.attributes[year_name])
break
if not close_val:
raise ValueError("No GDP for country %s found." % cntry_iso)
# the variable name changed in Natural Earth v5.0.0
if info_name in ['GDP_MD', 'GDP_MD_EST']:
close_val *= 1e6
elif info_name == 'INCOME_GRP':
close_val = INCOME_GRP_NE_TABLE.get(int(close_val[0]))
return close_year, close_val
def wealth2gdp(cntry_iso, non_financial=True, ref_year=2016,
file_name=FILE_GWP_WEALTH2GDP_FACTORS):
"""Get country's wealth-to-GDP factor from the
Credit Suisse's Global Wealth Report 2017 (household wealth).
Missing value: returns NaN.
Parameters
----------
cntry_iso : str
key = ISO alpha_3 country
non_financial : boolean
use non-financial wealth (True)
use total wealth (False)
ref_year : int
reference year
Returns
-------
float
"""
fname = SYSTEM_DIR.joinpath(file_name)
factors_all_countries = pd.read_csv(fname, sep=',', index_col=None,
header=0, encoding='ISO-8859-1')
if ref_year != 2016:
LOGGER.warning('Reference year for the factor to convert GDP to '
'wealth was set to 2016 because other years have not '
'been implemented yet.')
ref_year = 2016
if non_financial:
try:
val = factors_all_countries[
factors_all_countries.country_iso3 == cntry_iso]['NFW-to-GDP-ratio'].values[0]
except (AttributeError, KeyError, IndexError):
LOGGER.warning('No data for country, using mean factor.')
val = factors_all_countries["NFW-to-GDP-ratio"].mean()
else:
try:
val = factors_all_countries[
factors_all_countries.country_iso3 == cntry_iso]['TW-to-GDP-ratio'].values[0]
except (AttributeError, KeyError, IndexError):
LOGGER.warning('No data for country, using mean factor.')
val = factors_all_countries["TW-to-GDP-ratio"].mean()
val = np.around(val, 5)
return ref_year, val
def world_bank_wealth_account(cntry_iso, ref_year, variable_name="NW.PCA.TO",
no_land=True):
"""
Download and unzip wealth accounting historical data (1995, 2000, 2005, 2010, 2014)
from World Bank (https://datacatalog.worldbank.org/dataset/wealth-accounting).
Return requested variable for a country (cntry_iso) and a year (ref_year).
Parameters
----------
cntry_iso : str
ISO3-code of country, i.e. "CHN" for China
ref_year : int
reference year
- available in data: 1995, 2000, 2005, 2010, 2014
- other years between 1995 and 2014 are interpolated
- for years outside range, indicator is scaled
proportionally to GDP
variable_name : str
select one variable, i.e.:
'NW.PCA.TO': Produced capital stock of country
incl. manufactured or built assets such as machinery,
equipment, and physical structures
and value of built-up urban land (24% mark-up)
'NW.PCA.PC': Produced capital stock per capita
incl. manufactured or built assets such as machinery,
equipment, and physical structures
and value of built-up urban land (24% mark-up)
'NW.NCA.TO': Total natural capital of country. Natural capital
includes the valuation of fossil fuel energy (oil, gas,
hard and soft coal) and minerals (bauxite, copper, gold,
iron ore, lead, nickel, phosphate, silver, tin, and zinc),
agricultural land (cropland and pastureland),
forests (timber and some nontimber forest products), and
protected areas.
'NW.TOW.TO': Total wealth of country.
Note: Values are measured at market exchange rates in constant 2014 US dollars,
using a country-specific GDP deflator.
no_land : boolean
If True, return produced capital without built-up land value
(applies to 'NW.PCA.*' only). Default: True.
"""
try:
data_file = SYSTEM_DIR.joinpath(FILE_WORLD_BANK_WEALTH_ACC)
if not data_file.is_file():
data_file = SYSTEM_DIR.joinpath('Wealth-Accounts_CSV', FILE_WORLD_BANK_WEALTH_ACC)
if not data_file.is_file():
if not SYSTEM_DIR.joinpath('Wealth-Accounts_CSV').is_dir():
SYSTEM_DIR.joinpath('Wealth-Accounts_CSV').mkdir()
file_down = download_file(WORLD_BANK_WEALTH_ACC)
zip_ref = zipfile.ZipFile(file_down, 'r')
zip_ref.extractall(SYSTEM_DIR.joinpath('Wealth-Accounts_CSV'))
zip_ref.close()
Path(file_down).unlink()
LOGGER.debug('Download and unzip complete. Unzipping %s', str(data_file))
data_wealth = pd.read_csv(data_file, sep=',', index_col=None, header=0)
except Exception as err:
raise type(err)(
'Downloading World Bank Wealth Accounting Data failed: ' + str(err)) from err
data_wealth = data_wealth[data_wealth['Country Code'].str.contains(cntry_iso)
& data_wealth['Indicator Code'].str.contains(variable_name)
].loc[:, '1995':'2014']
years = list(map(int, list(data_wealth)))
if data_wealth.size == 0 and 'NW.PCA.TO' in variable_name: # if country is not found in data
LOGGER.warning('No data available for country. Using non-financial wealth instead')
gdp_year, gdp_val = gdp(cntry_iso, ref_year)
fac = wealth2gdp(cntry_iso)[1]
return gdp_year, np.around((fac * gdp_val), 1), 0
if ref_year in years: # indicator for reference year is available directly
result = data_wealth.loc[:, str(ref_year)].values[0]
elif np.min(years) < ref_year < np.max(years): # interpolate
result = np.interp(ref_year, years, data_wealth.values[0, :])
elif ref_year < np.min(years): # scale proportionally to GDP
gdp_year, gdp0_val = gdp(cntry_iso, np.min(years))
gdp_year, gdp_val = gdp(cntry_iso, ref_year)
result = data_wealth.values[0, 0] * gdp_val / gdp0_val
ref_year = gdp_year
else:
gdp_year, gdp0_val = gdp(cntry_iso, np.max(years))
gdp_year, gdp_val = gdp(cntry_iso, ref_year)
result = data_wealth.values[0, -1] * gdp_val / gdp0_val
ref_year = gdp_year
if 'NW.PCA.' in variable_name and no_land:
# remove value of built-up land from produced capital
result = result / 1.24
return ref_year, np.around(result, 1), 1
def _gdp_twn(ref_year, per_capita=False):
"""returns GDP for TWN (Republic of China / Taiwan Province of China) based
on a CSV sheet downloaded from the
International Monetary Fund (IMF).
The reason for this special treatment is the
lack of GDP data for TWN in the World Bank data
Data Source:
https://www.imf.org/external/pubs/ft/weo/2019/02/weodata/index.aspx
https://www.imf.org/external/pubs/ft/weo/2019/02/weodata/weorept.aspx?sy=1980&ey=2024&scsm=1&ssd=1&sic=1&sort=country&ds=.&br=1&pr1.x=42&pr1.y=10&c=528&s=NGDPD%2CNGDP_D%2CNGDPDPC&grp=0&a=
(saved as CSV with name GDP_TWN_IMF_WEO_data in SYSTEM_DIR)
Parameters
----------
ref_year : int
reference year, i.e. the year for which a GDP value is required
per_capita : boolean
return GDP per capita? Default False.
Returns
-------
float
"""
fname = 'GDP_TWN_IMF_WEO_data.csv'
if not SYSTEM_DIR.joinpath(fname).is_file():
raise FileNotFoundError(f'File {fname} not found in SYSTEM_DIR')
if per_capita:
var_name = 'Gross domestic product per capita, current prices'
else:
var_name = 'Gross domestic product, current prices'
if ref_year < 1980:
close_year = 1980
elif ref_year > 2024:
close_year = 2024
else:
close_year = ref_year
data = pd.read_csv(SYSTEM_DIR.joinpath('GDP_TWN_IMF_WEO_data.csv'),
index_col=None, header=0)
close_val = data.loc[data['Subject Descriptor'] == var_name, str(close_year)].values[0]
close_val = float(close_val.replace(',', ''))
if not per_capita:
close_val = close_val * 1e9
return close_year, close_val